Astronomie : La toise à soleil

Le soleil se déplace dans le ciel, cela est évident pour tout le monde. Mais son déplacement dépend de la position de l’axe de la terre à l’instant considéré. Pour mettre ces mouvements en évidence, voici un instrument facile à construire en classe, en centre de vacances : la toise à Soleil. Sa manipulation par les enfants, la répétition des mesures les amènera à se poser de nombreuses questions.

style='float:left;'>
Description de l’appareil :
a) un socle (contre-plaqué de 10 mm)
b) un disque qui sert de pied au montant (contre-plaqué de 10 mm)
c) un montant (tasseau de 50 x 20 x 300)
d) une aiguille à tricoter (0 1 mm) ou un rayon de bicyclette.

Réalisation

Figure n°1

Les dimensions dépendent de la longueur de l’aiguille d.
Pour une aiguille de 10 cm, la hauteur de la toise est d’environ 30 cm.
Porter la graduation sur une bande papier que l’on colle ensuite sur le tasseau c.

Pour déterminer la graduation on peut utiliser la trigonométrie (méthode précise) ou plus simplement la réaliser par dessin.
Exemple pour une aiguille de 5 cm : (figure 2).

Veillez à ce que c soit bien perpendiculaire au socle.

Vérifier que le socle b est horizontal, la flèche tournée vers le Sud.

Figure n°2

Suggestions d’utilisation
Elles dépendent bien sûr, de l’âge des enfants, du cadre dans lequel les mesures sont faites (classe, centre de vacances ... ).

En utilisant la partie mobile, vérifier que le soleil ne se lève pas toujours exactement à l’Est ni ne se couche pas à l’Ouest, sauf deux fois par an.
Construire la courbe de la hauteur du soleil en fonction de l’heure pour une journée. Cette courbe fera apparaître que le soleil n’est pas toujours le plus haut dans le ciel à midi (de nos montres).

Répéter ces mesures et la construction de la courbe à des périodes régulièrement espacées. La surprise des jeunes sera grande sans doute de voir que le soleil est parfois " en avance " à midi, parfois en retard donc qu’à certaines périodes de l’année les matinées sont plus courtes que les après-midi et que c’est le contraire à d’autres périodes.

On pourra comparer avec intérêt les courbes faites par des correspondants ou ailleurs si la classe devient transplantée. Qu’apporte un changement en longitude et en latitude ?

Repérer sur un calque la position des maxima successifs. En les joignant on obtient une ligne fermée... bizarre.

Tracer une courbe des hauteurs maxima en fonction des jours dans l’année. On obtient une courbe oscillant autour d’une valeur moyenne qui est le complément de la latitude du lieu.

Cette courbe permet aussi de déterminer expérimentalement la date des solstices, des équinoxes...

Figure n°3

08/11/2006